

Three Phase Solid State Relay

PCS24

FEATURES

- SCR Output (530V version), Triac Output (440V version)
- LED Status Indicator
- Built-In RC Snubber
- Removable Finger Safe Cover Option
- Photoelectric Isolation

INPUT PARAMETERS (Ta = 30°C)

•	•
Control Voltage Range	4~32 VDC with LED
Must Turn-On Voltage	4 VDC with LED
Must Turn-Off Voltage	1 VDC
Max Input Current	35 mA
Max Reverse Protection Voltage	-32 VDC

OUTPUT CURRENT PARAMETERS (Ta = 30°C)

`	,					
Load Current (200mA min)**	10A	15A	25A	40A	50A	60A
Max I ² t (10 ms, A ² s)	50	112	312	800	1250	1800
Max Surge Current (10 ms, Apk)	100	150	250	400	500	600
Thermal Resistance Junction to Case (Rjc, °C/W)	2.35	2.15	1.15	1.15	0.63	0.63

^{**}Minimum current loading over range required to fully turn-on device. Standard UL endurance ratings are 6,000 cycles

OUTPUT VOLTAGE PARAMETERS

		380A	480A		
Load Voltage Range (VAC)	48~440 48~530				
Max Transient Voltage (Vpk)		800	1200		
Min Off-State (dv/dt)		200 V/us	500 V/us		
Max Off-State Leakage Curre	10 mA				
Max On-State Voltage Drop		1.7 Vrms			
Max Turn-On Time	Zero Cross	1/2 cycle + 1ms			
	Random	1ms			
Max Turn-Off Time		1/2 cycle + 1ms			
Min Power Factor		0.5			
Frequency Range		47 Hz ~ 63 Hz			

CHARACTERISTICS

Insulation Resistance	1000 MΩ at 500 VDC
Dielectric Strength	4000 VAC, 50/60 Hz, 1 min, Input to Output
Max Capacitance	10pF, Input to Output
Operating Temperature	-30°C ~ 80°C
Storage Temperature	-30°C ~ 100°C
Relative Humidity	45% ~ 85%
Weight	315g

ORDERING INFORMATION

Example	PCS24	-D	-380A	-25	Z		L	Р
Model:	PCS24							
Control Voltage	D = 4~32VDC with LED							
Load Voltage	380A = 48~440VAC 480A = 48~530VAC		_					
Load Current	10 = 10 Amp 15 = 15 Amp 25 = 25 Amp 40 = 40 Amp 50 = 50 Amp 60 = 60 Amp							
Switching Type	Z = Zero Crossing R = Random Turn-On / Instar	taneous Tur	n-On (See Precau	ution #8)				
Output Component	Nil = Triac (380A only) S = SCRs (480A only)							
Over Voltage Protection	Nil = None Y = With Varistor (MOV)							
Status LED	L = Indicator LED, standard							
Phase Loss Protection	Nil = Without P = With Phase Loss Protect	ons**						-

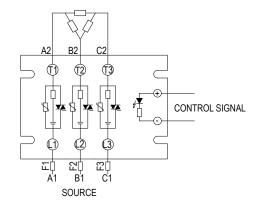
^{**} Phase Loss Protection: The input voltages are monitored. If one or two of the input line voltages drop to zero, the phase loss circuitry engages and all three outputs drop to zero volts. This feature protects the load that the SSR is switching. To indicate the Phase Loss Protection has engaged, the LED indicator will turn off. The LED indicator will only be lit if the SSR is functioning properly. The LED will not be lit if the control voltage drops to zero or if one of the line-in voltages drops to zero.

PRECAUTIONS

- When choosing a Solid State Relay (SSR), note the actual load current and ambient temperature and reference the Characteristic Curves.
- 2. SSRs require an adequate heat sinking or other effective cooling measure.
- 3. With ambient temperature above 35°C, refer to the curve of Max Load Current vs. Ambient Temperature for load current derating.
- 4. Apply heat-conducting silicon grease or a thermal transfer pad on the space between the SSR and heat sink and screw the SSR firmly to the heat sink to avoid damage from overheating.
- 5. Tighten the SSR terminal screws properly. We recommend screw installation torque as follows:

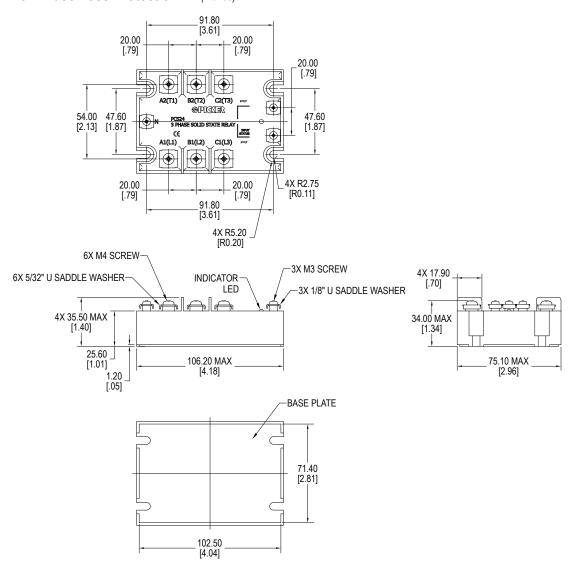

M4 screw mounting torque range is (0.98~1.37)N * m

M3 screw mounting torque range is (0.56~0.98)N * m

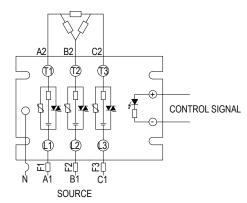

Loose screws will damage the SSR with heat generated from connections. Also, excessive screw torque may damage the relay's internal components.

- 6. It is recommended to use a heat sink matched to the Current Load. With any heat sink, test that the SSR base temperature does not exceed 65°C.
- 7. The surge current values listed are based on non-repetitive peak values. The standard value is 50% of the listed surge current. It is important to test the relay in the actual application. A fusing or a snummber circuit may be required.
- 8. When using the PCS24 relay with an inductive load, it is suggested to select Random Turn-On. (i.e. a model with "R" Switching Type). Motor loads may generate high transient voltages; test the realy in your application to ensure the output is not damaged.
- 9. The maximum transient voltage value listed in this datasheet is the non-repetitive peak value. If the transient voltage in the application exceeds the nominal value, a R-C network, TVS diode, or varistor is required across the output to prevent damage to the SSR.
- 10. The PCS24 is not suitable for capacitive loads; if you must switch a capacitive load, do not choose the varistor protection option. (i.e. a model with the "Y" Over Voltage Protection)
- 11. Listed parameters are based on resistive loads. Do not use the relay beyond the described current, temperature, load or voltage limits as described in this datasheet.

DIMENSIONS — No Phase Loss Protection mm (inches)



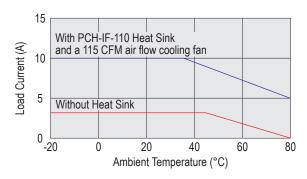
WIRING DIAGRAM



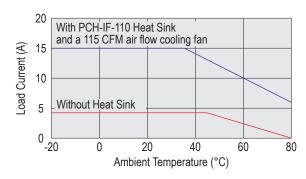
NOTE: F1, F2, F3 should be semiconductor fuses

DIMENSIONS — With Phase Loss Protection mm (inches)

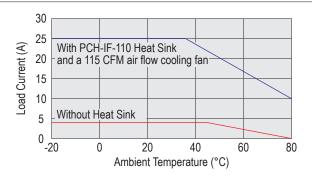
WIRING DIAGRAM

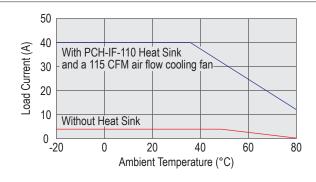


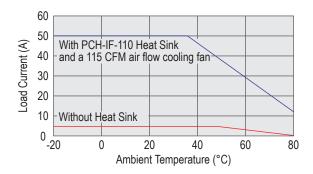
NOTE: F1, F2, F3 should be semiconductor fuses

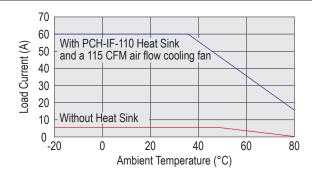

ACCESSORIES

Heat Transfer Pad	HTP300
Protective Cover	SSR300
Heat Sink	PCH-H-150 for applications up to 25 Amps @ 25°C
	PCH-IF-110 for applications up to 40 Amps and above @ 25°C (requires an additional 40 CFM cooling fan)


CHARACTERISTIC CURVES

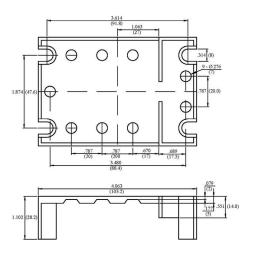

Max Load Current vs. Ambient Temperature - 10A


Max Load Current vs. Ambient Temperature - 15A

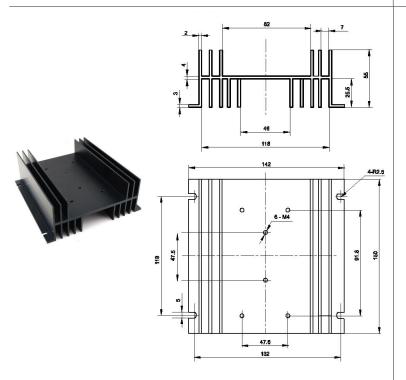

Max Load Current vs. Ambient Temperature - 25A

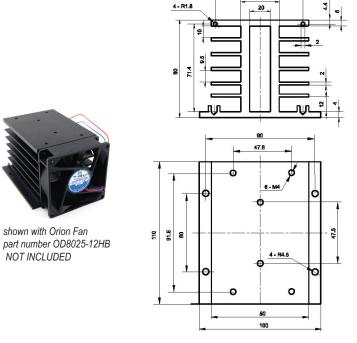
Max Load Current vs. Ambient Temperature - 40A

Max Load Current vs. Ambient Temperature - 50A



Max Load Current vs. Ambient Temperature - 60A


ACCESSORIES


HTP300 — Heat Transfer Pad

SSR300— Protective Cover Removable, made of UL94V-O approved clear polycarbonate

PCH-H-150 Heat Sink 55x142x150mm; Thermal Resistance 0.6°C/W

PCH-IF-110 Heat Sink 80x100x110mm; Requires additional 80mm cooling fan, **not** included. Orion Fan OD8025-12HB is recommended